
How	 to	 Scale	 Dynamic	 Tuning	
to	 Large	 Parallel	 Applica8ons	

HIPS	 2013	 Conference	

Andrea	 Mar)nez,	 Anna	 Sikora,	 Eduardo	 César,	
Joan	 Sorribes	

	

Computer	 Architecture	 and	 Opera8ng	 Systems	 Department	
Universidad	 Autónoma	 de	 Barcelona	

Outline	

•  Mo8va8on.	

•  Large-‐scale	 Dynamic	 Tuning.	

•  Scalability	 Evalua8on.	
	

•  Conclusions	 and	 Future	 Work.	

Computer	 Architecture	 and	 Opera8ng	 Systems	 Department	
Universidad	 Autónoma	 de	 Barcelona	

Mo8va8on	

CHALLENGES	

•  Ac8ve	 Harmony	
•  MATE	

•  Periscope	
•  Scalasca	

Dynamic	 tuning	 Scalability	

Computer	 Architecture	 and	 Opera8ng	 Systems	 Department	
Universidad	 Autónoma	 de	 Barcelona	

Mo8va8on	

Computer	 Architecture	 and	 Opera8ng	 Systems	 Department	
Universidad	 Autónoma	 de	 Barcelona	

Define	 an	 approach	 that	 provides	 automa8c	 and	
dynamic	 analysis	 and	 tuning	 of	 large-‐scale	 parallel	

applica8ons	 	

	

At	 run	 8me	

Performance	 analysis	 Modifica8ons	 Monitoring	

Parallel	 Applica8on	

Mo8va8on	

Computer	 Architecture	 and	 Opera8ng	 Systems	 Department	
Universidad	 Autónoma	 de	 Barcelona	

Define	 an	 approach	 that	 provides	 automa8c	 and	
dynamic	 analysis	 and	 tuning	 of	 large-‐scale	 parallel	

applica8ons	 	

	

Daemon0	 Daemon1	

Task0	 Task1	

Daemonn	

Taskn	

	
	

Monitoring,	
analysis	 and	

tuning	 module	
	
	

.	 	 .	 	 .	
	
.	 	 .	 	 .	

Outline	

•  Mo8va8on.	

•  Large-‐scale	 Dynamic	 Tuning.	

•  Scalability	 Evalua8on.	
	

•  Conclusions	 and	 future	 work.	

Computer	 Architecture	 and	 Opera8ng	 Systems	 Department	
Universidad	 Autónoma	 de	 Barcelona	

Hierarchical	 Tuning	 Network	

• The	 base	 of	 the	 hierarchy	 is	 composed	 of	 Analyzers	 that	
controls	 disjoint	 subsets	 of	 applica8on	 tasks	

• Abstrac8on	 mechanism	 between	 levels	 of	 Analyzers.	

• It	 is	 composed	 of	 analysis	 and	 tuning	 modules	 (Analyzers)	
structured	 as	 a	 hierarchical	 tree.	

Analysis and tuning
domain

An analyzer must be able to present itself, to its
parent Analyzer, as a parallel application task …

…and abstracts the behaviour of its
analysis and tuning domain

Abstractor

Application task
Analyzer

Computer	 Architecture	 and	 Opera8ng	 Systems	 Department	
Universidad	 Autónoma	 de	 Barcelona	

Monitoring	

Analysis	

Tuning	

Application task

Abstractor

Abstrac8on	 mechanism	

Analyzer

Event	 Manager	

Tunlet	

Instrumenta8on	
Order	 Sender	

Instrumentation
order translator

Event
Creator

IN
TE

R
N

A
L

A
P

I

Events Instrumentation
orders

Level	 i	

Level	 i+1	

Performance model

• Monitoring points
• Performance functions.
• Tuning points.

Abstraction model

• How to translate instrumentation orders to
be applied to the child level.
• How to create new events which satisfy
the requests of previous monitoring
orders.

User	

Abstrac8on	 example	

Computer	 Architecture	 and	 Opera8ng	 Systems	 Department	
Universidad	 Autónoma	 de	 Barcelona	

T15

T4T3T2T1

T8T7T6T5

T12T11T10T9

T16T15T14T13

A1.1 A1.2

A1.3 A1.4

A1

Monitoring	 order	 translaBon	

A1	 generates:	
	
•  Mon_Order(computa8on_8me,	 #work_units)	 to	 A1.1	
•  Mon_Order(computa8on_8me,	 #work_units)	 to	 A1.2	
•  Mon_Order(computa8on_8me,	 #work_units)	 to	 A1.3	
•  Mon_Order(computa8on_8me,	 #work_units)	 to	 A1.4	

Abstractor	 associated	 to	 A1.1	 generates:	
	
•  Mon_Order(computa8on_8me,	 #work_units)	 to	 T1	
•  Mon_Order(computa8on_8me,	 #work_units)	 to	 T2	
•  Mon_Order(computa8on_8me,	 #work_units)	 to	 T5	
•  Mon_Order(computa8on_8me,	 #work_units)	 to	 T6.	
	

Event	 CreaBon	

A1.1	 receives:	
	
•  Event(computa8on_8me,	 #work_units)	 from	 T1	
•  Event(computa8on_8me,	 #work_units)	 from	 T2	
•  Event(computa8on_8me,	 #work_units)	 from	 T5	
•  Event(computa8on_8me,	 #work_units)	 from	 T6	

Using	 the	 abstrac8on	 model,	 the	 Abstractor	 associated	 to	
A1.1	 creates	 a	 new	 event:	
	
•  Event(Mean(computa8on_8me),	 Sum(#work_units))	

to	 A1	
	

Abstrac8on	 example	
T15

T4T3T2T1

T8T7T6T5

T12T11T10T9

T16T15T14T13

A1.1 A1.2

A1.3 A1.4

A1

Computer	 Architecture	 and	 Opera8ng	 Systems	 Department	
Universidad	 Autónoma	 de	 Barcelona	

A1	 generates:	
	
•  TuningOrder(send_load,	 to_A1.3,	 #work_units)	 to	 A1.1	

Using	 the	 abstrac8on	 model,	 the	 Abstractor	 associated	 to	
A1.1	 generates:	
	
•  TuningOrder(send_load,	 to_T9,	 #work_units/2)	 to	 T5	
•  TuningOrder(send_load,	 to_T10,	 #work_units/2)	 to	 T6	
	

Tuning	 order	 translaBon	

Abstrac8on	 example	
T15

T4T3T2T1

T8T7T6T5

T12T11T10T9

T16T15T14T13

A1.1 A1.2

A1.3 A1.4

A1

Computer	 Architecture	 and	 Opera8ng	 Systems	 Department	
Universidad	 Autónoma	 de	 Barcelona	

Determining	 the	 architecture	 topology	

Parallel	 applica8on	 of	
N	 tasks	

The	 use	 of	 architecture	 topologies	 with	 the	 minimum	 number	 of	 non-‐saturated	 analysis	 modules.	 	

Table I: Description of variables which represent the performance and abstraction models.

Variable description
N the number of nodes in the analysis and tuning domain for each analysis module
Ea the number of events received from each node of the analysis and tuning domain before performing analysis to detect performance

problems
Ec the number of events received from each node of the analysis and tuning domain before creating a new event which will be sent

to the level above in the hierarchy
Ta(N) the time required to perform analysis to detect performance problems. This time can be constant or dependent of N
Tm the time required to transfer each event received by the analysis module to the correct module, where it is stored
Tc the time required to create a new event which will be sent to the level above in the hierarchy
Tt the time required to transform an instrumentation order which will be sent to the level below in the hierarchy
frp the tuning order reception frequency from the parent analysis module
frc the event reception frequency from each child node of the analysis and tuning domain
fe the events generation frequency of the parallel application

order for moving load from the application tasks T5 and T9,
because these tasks are the only ones that share a common
border with the analysis and tuning domain of A1.3.

III. DETERMINING THE ARCHITECTURE TOPOLOGY

Given a parallel application, the proposed analysis ar-
chitecture may have several topologies, depending on the
number of analysis modules used to build it.

In this work, we propose the creation of architectures
that use the fewest possible resources, so a topology with
the minimum number of analysis modules must be found.
However, these analysis modules cannot become saturated.
An analysis module is saturated if it cannot process and act
upon the information that it receives from the application at
the frequency with which it is sent.

The maximum domain size for a non-saturated analysis
module is determined by the work required during an analy-
sis and tuning process - detecting performance problems and
making decisions to improve the performance of the parallel
application. Considering the variables presented in Table I,
we can define the total time that an analysis module requires
to carry out an analysis and tuning process as:

N · Ea · Tm + Ta(N) +
Ea

Ec
· Tc + Tt · frp (1)

This work can be divided into several actions:
1) Gathering behavioural information about the nodes

that make up the analysis and tuning domain of the
analysis module. The time required to gather an event
and transfer it to either the Tunlet or the Event Creator
is Tm. This action is repeated for each event received
before detecting performance problems, i.e N · Ea.

2) Detecting performance problems and making the nec-
essary decisions which will improve the performance
of the application. According to the characteristics of
the performance model, the time taken by an analysis
module to detect performance problems, Ta(N), can
be constant or dependent on the number of nodes
that compose the analysis and tuning domain of the
analysis module.

3) Creating a new event using the behavioural informa-
tion previously gathered, taking a time equal to Tc.

The number of occurrences of this action in an analysis
and tuning process is determined by Ea/Ec.

4) Translating an instrumentation order received from the
parent Analyzer, taking a time equal to Tt. How often
this action is performed depends on the frequency
with which tuning orders are received from the parent
Analyzer, frp.

The frequency at which an analysis and tuning process
takes place in an analysis module is fa = frc/Ea. This value
ultimately depends on the frequency with which events are
generated in the parallel application task, fe.

In order to avoid saturation, the maximum time that an
analysis module can dedicate to carry out an analysis and
tuning process is 1/fa, the analysis period. This constraint
is defined by the following expression:

N · Ea · Tm + Ta(N) +
Ea

Ec
· Tc + Tt · frp ≤ 1

fa
(2)

If the time spent performing the work of an analysis and
tuning process is equal to 1/fa, the analysis module does not
have free time between two analysis and tuning processes. In
other words, it is occupied 100% of the time making efficient

Algorithm 1 Calculating the topology of the hierarchical
architecture
Input: #Tasks // Number of tasks of the parallel application.
Input: E

i
a, E

i
c, T

i
a(N), T i

m, T
i
c , T

i
t , f

i
rp, f

i
rc // Analysis and tuning

process variables for each level i
Output: Topology[]

i = 0 // i indicates the level of the hierarchy. i = 0 means the
base of the hierarchy.
Current level tasks = #Tasks // The base level tasks are
all the tasks of the parallel application.
repeat

N =
1
fi
a
−Ei

a
Ei

c
·T i

c−T i
a(N)−T i

t ·f
i
rp

Ei
a·T i

m

#Analysis modules = (int)Current level tasks
N

Topology[i] = #Analysis modules

Current level tasks = #Analysis modules

i++

until #Analysis modules > 1

Work	 during	 the	 analysis	 and	 tuning	 process	

Gathering	 performance	 data	

Performance	 analysis	

Event	 crea8on	
Order	 transla8on	

Computer	 Architecture	 and	 Opera8ng	 Systems	 Department	
Universidad	 Autónoma	 de	 Barcelona	

Outline	

•  Mo8va8on.	

•  Large-‐scale	 Dynamic	 Tuning.	

•  Scalability	 evalua8on.	
	

•  Conclusions	 and	 future	 work.	

Computer	 Architecture	 and	 Opera8ng	 Systems	 Department	
Universidad	 Autónoma	 de	 Barcelona	

Scalability	 Evalua8on	

Front-‐end	

Back-‐ends	

Data	
Stream	 Com

m
unica8on	 processes	

tree	
•  Prototype	 implementa8on	 of	 the	 proposed	 tuning	 network	

MRNet	 Framework	

• A	 network	 of	 hierarchically	
organised	 processes	 .	

• Poten8al:	 Filters.	

Func8onality	
Abstractor-‐Analyzer	 	 Filter	

Computer	 Architecture	 and	 Opera8ng	 Systems	 Department	
Universidad	 Autónoma	 de	 Barcelona	

The	 prototype	 simulates	 all	 the	 ac8ons	 which	 would	 take	 place	 during	 the	 performance	 analysis	 and	
tuning	 process	 of	 a	 parallel	 applica8on:	

-‐  BEs	 simulate	 an	 instrumented	 SPMD	 applica8on.	
-‐  Filters	 simulate	 the	 Abstractor-‐Analyzer	 func8onality.	

Scalability	 Evalua8on	
•  Execu8on	 Environments:	

–  Marenostrum	 at	 Barcelona	 Supercompu8ng	 Centre	 	 	
–  SuperMUC	 at	 Leibniz	 Supercompu8ng	 Centre	

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

0 2550 100 200 400 800

T
im

e
 t
o
 m

a
k
e
 a

 d
e
c
is

io
n
 (

m
s
)

Number of tasks in the parallel application

Scalability at MareNostrum

Level 0
Level 1
Level 2

(a)

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

0 400 800 1600 3200 6400

T
im

e
 t
o
 m

a
k
e
 a

 d
e
c
is

io
n
 (

m
s
)

Number of tasks in the parallel application

Scalability at SuperMUC

Level 0
Level 1
Level 2

(b)

Figure 6: Time required to make a decision. The time is measured for each level in the hierarchy.

by Myrinet Network. Each node, running SuSe Linux,
has 2 dual-core 2.3 GHz PowerPC 970MP processors. On
SuperMUC we used an island composed of 512 nodes
interconnected by Infiniband FDR10. Each node, running
SuSe Linux, has 2 8-core 2.7GHz Intel Xeon processors.

Suppose a performance and abstraction model simulated
by the prototype with the following parameters:

• fe of 10 events per second per simulated task.
• Ea of 10, a performance problem detection phase is

performed every 10 batches of events.
• Ec of 1, a single new event is sent to the parent level

every batch of events, as such frc = fe at all levels.
• Linear Ta(N) of 30ms, i.e. the performance problems

detection phase lasts 30ms per node within the analysis
and tuning domain of the analysis module.

• Tm of 1ms.
• Tc and Tt of 0.1ms.
• frp of fe/(10 · Ea), a tuning action is received every

10 seconds
Keeping these values the same, analysis architectures

have been created for parallel applications composed of
different numbers of tasks following the algorithm given in
Section III. The same parameter values are used for all levels
within each of the hierarchies. The details of each of these
architectures are given in Table II.

Figure 6 presents the average time required to make
decisions at each level for each of the experiments on
each platform. This is defined as the time between the
generation of the final event required to make a decision
for performance improvement and the moment when that
decision is made at the end of an analysis and tuning process.
The decision time at level i includes the time required for
an analysis and tuning process at each descendant level.

Figure 6(a) shows that the time to make a decision at
level 0 rapidly reaches a ceiling, when the analysis modules
are controlling the maximum number of tasks. This situation
occurs because as the parallel application grows, additional
analysis modules are simply added. The decision time at
level 1 increases proportionally to the size of the analysis
and tuning domain at this level in the hierarchy. When
the application reaches 800 tasks, a new level is required.
However, in this last experiment since the two analysis

Table II: Architecture topologies for parallel applications
composed of different number of tasks.

Tasks of Level 0 Level 1 Level 2
the parallel #Analysis Domain #Analysis Domain #Analysis Domain
application modules size modules size modules size

Architectures executed in MareNostrum and SuperMUC
25 2 13 1 2 - -
50 3 16 1 3 - -

100 5 20 1 5 - -
200 10 20 1 10 - -
400 19 22 1 19 - -
800 37 22 2 19 1 2

Architectures executed in SuperMUC
1600 73 22 4 20 1 4
3200 146 22 7 21 1 7
6400 292 22 14 21 1 14

modules at level 1 are working in parallel, the global
decision time is only slightly larger than for 400 application
tasks. This small increase from 400 to 800 tasks highlights
the key benefit of the hierarchical architecture.

Figure 6(b) shows the results obtained for experiments
executed on SuperMUC. Specifically, time for larger scale
experiments are shown due to the availability of more nodes
in this platform. The experiments run on SuperMUC for 25
to 800 tasks presented the same behaviour as on MareNos-
trum, in fact the decision times at each level are within 0.8%
of one another. For reasons of scale, the experiments for less
than 400 tasks have been omitted. It is demonstrated that the
pattern of the previously commented results continues as the
application grows. Given that all the analysis modules work
in parallel, except for the root, the overall increase in global
decision time grows only sub-polynomially as the number
of application tasks increases and new levels are filled up or
added to the hierarchy.

The parameters that define the performance and abstrac-
tion model will change the values of the results observed,
however the underlying pattern of scalability remains. This
pattern depends upon the properties of the proposed analysis
architecture and not on the specific characteristics of the
application and the performance and abstraction models’
parameters.

To demonstrate the efficiency of the hierarchical analysis
architectures used in the scalability experiments, we will
show that they are composed of the minimum number of
the analysis modules necessary for efficiently analysing and
tuning the application.

Computer	 Architecture	 and	 Opera8ng	 Systems	 Department	
Universidad	 Autónoma	 de	 Barcelona	

Computer	 Architecture	 and	 Opera8ng	 Systems	 Department	
Universidad	 Autónoma	 de	 Barcelona	

Scalability	 Evalua8on	
Time	 to	 make	 a	 decision	

...

... ...

Parallel Application

...
...

...

Decision time at level 1

Decision time at level 0

Global decision time

Level 0

Level 1

Root level

Network transfer
Management
Performance analysis
New event creation

time

Scalability	 Evalua8on	

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

0 2550 100 200 400 800

Ti
m

e
to

 m
ak

e
a

de
ci

si
on

 (m
s)

Number of tasks in the parallel application

Scalability at MareNostrum

Level 0
Level 1
Level 2

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

0 400 800 1600 3200 6400

Ti
m

e
to

 m
ak

e
a

de
ci

si
on

 (m
s)

Number of tasks in the parallel application

Scalability at SuperMUC

Level 0
Level 1
Level 2

Computer	 Architecture	 and	 Opera8ng	 Systems	 Department	
Universidad	 Autónoma	 de	 Barcelona	

Scalability	 Evalua8on	
Efficiency	 of	 the	 hierarchical	 tuning	 network	

t
Event batch

Management

Analysis

Analysis lag

Computer	 Architecture	 and	 Opera8ng	 Systems	 Department	
Universidad	 Autónoma	 de	 Barcelona	

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40 45 50

lo
g
 A

n
a
ly

si
s

la
g
 (

m
s)

Experiment time (s)

Experiment 1
Experiment 2
Experiment 3

(a)

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40 45 50

A
n
a
ly

si
s

la
g
 (

m
s)

Experiment time (s)

Experiment 1
Experiment 2
Experiment 3

(b)

Figure 7: Analysis lag of the level 0 and 1 analysis modules in milliseconds.

Table III: Architecture topologies for the three experiments
conducted.

Level 0 Level 1
Experiment #Analysis Domain #Analysis Domain

modules size modules size
1 19 21 1 19
2 20 20 1 20
3 18 22 1 18

In order to achieve this goal, we must compare the
analysis topology built using expression 2 with topolo-
gies composed of a fewer and greater number of analysis
modules. For this purpose, we have chosen the topology
calculated for 400 parallel application tasks. The topology
for these 3 experiments are given in Table III and the results
are shown in Figure 7.

To determine whether or not the analysis module is satu-
rated we define a measurement called analysis lag, which is
the time between the generation of the final event required
for an analysis and tuning process and the start of that
process, as shown in Figure 8. A saturated analysis module
presents an analysis lag which steadily increases during the
experiment’s execution. This is because the analysis module
has an increasing backlog due to being unable to complete
an analysis and tuning process within the analysis period.
A stable analysis lag, one that does not change significantly
over time, indicates a non-saturated analysis module.

Figure 7(a) shows the analysis lag over time for the
analysis modules located at level 0 in the hierarchy for the
three compared topologies.

These results show the expected behavior, wherein the
analysis lag from Experiment 3 reflects its saturation (due

!
"#$

%!&'
(!)*

+(%
(,$

-$%
!

.%(
/0121

.%(/0121&/(,

Figure 8: Analysis lag.

to having fewer level 0 analysis modules than necessary),
Experiments 1 and 2, are not saturated as demonstrated by
the stability of their analysis lag.

The analysis lag for the level 1 analysis modules is pre-
sented in Figure 7(b). In this case, all three experiments show
analysis modules with stable analysis lag and managing a
number of children far below their maximum domain size. It
can be seen that when an analysis module is not saturated,
the analysis lag is directly proportional to the number of
nodes within the analysis and tuning domain. It should be
noted that in Experiment 3, descendant saturated analysis
modules do not affect the analysis lag metric at the level
1. However, the quality of the performance analysis and
tuning process carried out by the level 1 analysis module
in Experiment 3 will be greatly degraded by the saturation
of the descendant analysis modules.

The counterpoint to the saturation of the analysis module
is resource usage, so while Experiment 2 presents a slightly
smaller analysis lag at level 0, its use of additional resources
makes it less efficient. As such, the predicted architecture is
in fact the best candidate. It makes efficient use of resources,
employing the minimum number of non-saturated analysis
modules.

VI. RELATED WORK

Currently, there are several analysis tools that are able
to work on large scale systems, managing the scalability
problems. Well known examples are Paradyn [11], Scalasca
[4], TAU Performance System [12], and Periscope [3]. All
of them implement some sort of decentralised mechanism,
most of them hierarchical, and in some cases using MRNet.
However, none of them, except for latest efforts in Periscope,
consider application tuning.

There are also other tools which perform dynamic tuning
of parallel applications. Autopilot [13] supports dynamic
performance tuning in heterogeneous environments.The Au-
topilot monitoring process is based on dynamic integration
of sensors, which extract information about the application.
The information analysis and decision procedures are per-
formed using fuzzy logic. Finally, the application tuning is
done by dynamically inserting actuator processes.

400	 tasks	

+	
-‐	

Scalability	 Evalua8on	

Computer	 Architecture	 and	 Opera8ng	 Systems	 Department	
Universidad	 Autónoma	 de	 Barcelona	

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40 45 50

lo
g
 A

n
a
ly

si
s

la
g
 (

m
s)

Experiment time (s)

Experiment 1
Experiment 2
Experiment 3

(a)

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40 45 50

A
n
a
ly

si
s

la
g
 (

m
s)

Experiment time (s)

Experiment 1
Experiment 2
Experiment 3

(b)

Figure 7: Analysis lag of the level 0 and 1 analysis modules in milliseconds.

Table III: Architecture topologies for the three experiments
conducted.

Level 0 Level 1
Experiment #Analysis Domain #Analysis Domain

modules size modules size
1 19 21 1 19
2 20 20 1 20
3 18 22 1 18

In order to achieve this goal, we must compare the
analysis topology built using expression 2 with topolo-
gies composed of a fewer and greater number of analysis
modules. For this purpose, we have chosen the topology
calculated for 400 parallel application tasks. The topology
for these 3 experiments are given in Table III and the results
are shown in Figure 7.

To determine whether or not the analysis module is satu-
rated we define a measurement called analysis lag, which is
the time between the generation of the final event required
for an analysis and tuning process and the start of that
process, as shown in Figure 8. A saturated analysis module
presents an analysis lag which steadily increases during the
experiment’s execution. This is because the analysis module
has an increasing backlog due to being unable to complete
an analysis and tuning process within the analysis period.
A stable analysis lag, one that does not change significantly
over time, indicates a non-saturated analysis module.

Figure 7(a) shows the analysis lag over time for the
analysis modules located at level 0 in the hierarchy for the
three compared topologies.

These results show the expected behavior, wherein the
analysis lag from Experiment 3 reflects its saturation (due

!
"#$

%!&'
(!)*

+(%
(,$

-$%
!

.%(
/0121

.%(/0121&/(,

Figure 8: Analysis lag.

to having fewer level 0 analysis modules than necessary),
Experiments 1 and 2, are not saturated as demonstrated by
the stability of their analysis lag.

The analysis lag for the level 1 analysis modules is pre-
sented in Figure 7(b). In this case, all three experiments show
analysis modules with stable analysis lag and managing a
number of children far below their maximum domain size. It
can be seen that when an analysis module is not saturated,
the analysis lag is directly proportional to the number of
nodes within the analysis and tuning domain. It should be
noted that in Experiment 3, descendant saturated analysis
modules do not affect the analysis lag metric at the level
1. However, the quality of the performance analysis and
tuning process carried out by the level 1 analysis module
in Experiment 3 will be greatly degraded by the saturation
of the descendant analysis modules.

The counterpoint to the saturation of the analysis module
is resource usage, so while Experiment 2 presents a slightly
smaller analysis lag at level 0, its use of additional resources
makes it less efficient. As such, the predicted architecture is
in fact the best candidate. It makes efficient use of resources,
employing the minimum number of non-saturated analysis
modules.

VI. RELATED WORK

Currently, there are several analysis tools that are able
to work on large scale systems, managing the scalability
problems. Well known examples are Paradyn [11], Scalasca
[4], TAU Performance System [12], and Periscope [3]. All
of them implement some sort of decentralised mechanism,
most of them hierarchical, and in some cases using MRNet.
However, none of them, except for latest efforts in Periscope,
consider application tuning.

There are also other tools which perform dynamic tuning
of parallel applications. Autopilot [13] supports dynamic
performance tuning in heterogeneous environments.The Au-
topilot monitoring process is based on dynamic integration
of sensors, which extract information about the application.
The information analysis and decision procedures are per-
formed using fuzzy logic. Finally, the application tuning is
done by dynamically inserting actuator processes.

Analysis	 lag	 of	 level	 0	 analysis	 modules	

Satura8on	 state	

Stable	 state	

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40 45 50

lo
g

 A
n

a
ly

si
s

la
g

 (
m

s)

Experiment time (s)

Experiment 1
Experiment 2
Experiment 3

(a)

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40 45 50

A
n

a
ly

si
s

la
g

 (
m

s)

Experiment time (s)

Experiment 1
Experiment 2
Experiment 3

(b)

Figure 7: Analysis lag of the level 0 and 1 analysis modules in milliseconds.

Table III: Architecture topologies for the three experiments
conducted.

Level 0 Level 1
Experiment #Analysis Domain #Analysis Domain

modules size modules size
1 19 21 1 19
2 20 20 1 20
3 18 22 1 18

In order to achieve this goal, we must compare the
analysis topology built using expression 2 with topolo-
gies composed of a fewer and greater number of analysis
modules. For this purpose, we have chosen the topology
calculated for 400 parallel application tasks. The topology
for these 3 experiments are given in Table III and the results
are shown in Figure 7.

To determine whether or not the analysis module is satu-
rated we define a measurement called analysis lag, which is
the time between the generation of the final event required
for an analysis and tuning process and the start of that
process, as shown in Figure 8. A saturated analysis module
presents an analysis lag which steadily increases during the
experiment’s execution. This is because the analysis module
has an increasing backlog due to being unable to complete
an analysis and tuning process within the analysis period.
A stable analysis lag, one that does not change significantly
over time, indicates a non-saturated analysis module.

Figure 7(a) shows the analysis lag over time for the
analysis modules located at level 0 in the hierarchy for the
three compared topologies.

These results show the expected behavior, wherein the
analysis lag from Experiment 3 reflects its saturation (due

!
"#$

%!&'
(!)*

+(%
(,$

-$%
!

.%(
/0121

.%(/0121&/(,

Figure 8: Analysis lag.

to having fewer level 0 analysis modules than necessary),
Experiments 1 and 2, are not saturated as demonstrated by
the stability of their analysis lag.

The analysis lag for the level 1 analysis modules is pre-
sented in Figure 7(b). In this case, all three experiments show
analysis modules with stable analysis lag and managing a
number of children far below their maximum domain size. It
can be seen that when an analysis module is not saturated,
the analysis lag is directly proportional to the number of
nodes within the analysis and tuning domain. It should be
noted that in Experiment 3, descendant saturated analysis
modules do not affect the analysis lag metric at the level
1. However, the quality of the performance analysis and
tuning process carried out by the level 1 analysis module
in Experiment 3 will be greatly degraded by the saturation
of the descendant analysis modules.

The counterpoint to the saturation of the analysis module
is resource usage, so while Experiment 2 presents a slightly
smaller analysis lag at level 0, its use of additional resources
makes it less efficient. As such, the predicted architecture is
in fact the best candidate. It makes efficient use of resources,
employing the minimum number of non-saturated analysis
modules.

VI. RELATED WORK

Currently, there are several analysis tools that are able
to work on large scale systems, managing the scalability
problems. Well known examples are Paradyn [11], Scalasca
[4], TAU Performance System [12], and Periscope [3]. All
of them implement some sort of decentralised mechanism,
most of them hierarchical, and in some cases using MRNet.
However, none of them, except for latest efforts in Periscope,
consider application tuning.

There are also other tools which perform dynamic tuning
of parallel applications. Autopilot [13] supports dynamic
performance tuning in heterogeneous environments.The Au-
topilot monitoring process is based on dynamic integration
of sensors, which extract information about the application.
The information analysis and decision procedures are per-
formed using fuzzy logic. Finally, the application tuning is
done by dynamically inserting actuator processes.

Scalability	 Evalua8on	

Computer	 Architecture	 and	 Opera8ng	 Systems	 Department	
Universidad	 Autónoma	 de	 Barcelona	

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40 45 50

lo
g
 A

n
a
ly

si
s

la
g
 (

m
s)

Experiment time (s)

Experiment 1
Experiment 2
Experiment 3

(a)

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40 45 50

A
n
a
ly

si
s

la
g
 (

m
s)

Experiment time (s)

Experiment 1
Experiment 2
Experiment 3

(b)

Figure 7: Analysis lag of the level 0 and 1 analysis modules in milliseconds.

Table III: Architecture topologies for the three experiments
conducted.

Level 0 Level 1
Experiment #Analysis Domain #Analysis Domain

modules size modules size
1 19 21 1 19
2 20 20 1 20
3 18 22 1 18

In order to achieve this goal, we must compare the
analysis topology built using expression 2 with topolo-
gies composed of a fewer and greater number of analysis
modules. For this purpose, we have chosen the topology
calculated for 400 parallel application tasks. The topology
for these 3 experiments are given in Table III and the results
are shown in Figure 7.

To determine whether or not the analysis module is satu-
rated we define a measurement called analysis lag, which is
the time between the generation of the final event required
for an analysis and tuning process and the start of that
process, as shown in Figure 8. A saturated analysis module
presents an analysis lag which steadily increases during the
experiment’s execution. This is because the analysis module
has an increasing backlog due to being unable to complete
an analysis and tuning process within the analysis period.
A stable analysis lag, one that does not change significantly
over time, indicates a non-saturated analysis module.

Figure 7(a) shows the analysis lag over time for the
analysis modules located at level 0 in the hierarchy for the
three compared topologies.

These results show the expected behavior, wherein the
analysis lag from Experiment 3 reflects its saturation (due

!
"#$

%!&'
(!)*

+(%
(,$

-$%
!

.%(
/0121

.%(/0121&/(,

Figure 8: Analysis lag.

to having fewer level 0 analysis modules than necessary),
Experiments 1 and 2, are not saturated as demonstrated by
the stability of their analysis lag.

The analysis lag for the level 1 analysis modules is pre-
sented in Figure 7(b). In this case, all three experiments show
analysis modules with stable analysis lag and managing a
number of children far below their maximum domain size. It
can be seen that when an analysis module is not saturated,
the analysis lag is directly proportional to the number of
nodes within the analysis and tuning domain. It should be
noted that in Experiment 3, descendant saturated analysis
modules do not affect the analysis lag metric at the level
1. However, the quality of the performance analysis and
tuning process carried out by the level 1 analysis module
in Experiment 3 will be greatly degraded by the saturation
of the descendant analysis modules.

The counterpoint to the saturation of the analysis module
is resource usage, so while Experiment 2 presents a slightly
smaller analysis lag at level 0, its use of additional resources
makes it less efficient. As such, the predicted architecture is
in fact the best candidate. It makes efficient use of resources,
employing the minimum number of non-saturated analysis
modules.

VI. RELATED WORK

Currently, there are several analysis tools that are able
to work on large scale systems, managing the scalability
problems. Well known examples are Paradyn [11], Scalasca
[4], TAU Performance System [12], and Periscope [3]. All
of them implement some sort of decentralised mechanism,
most of them hierarchical, and in some cases using MRNet.
However, none of them, except for latest efforts in Periscope,
consider application tuning.

There are also other tools which perform dynamic tuning
of parallel applications. Autopilot [13] supports dynamic
performance tuning in heterogeneous environments.The Au-
topilot monitoring process is based on dynamic integration
of sensors, which extract information about the application.
The information analysis and decision procedures are per-
formed using fuzzy logic. Finally, the application tuning is
done by dynamically inserting actuator processes.

Analysis	 lag	 of	 level	 1	 analysis	 modules	

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40 45 50

lo
g

 A
n

a
ly

si
s

la
g

 (
m

s)

Experiment time (s)

Experiment 1
Experiment 2
Experiment 3

(a)

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40 45 50

A
n

a
ly

si
s

la
g

 (
m

s)

Experiment time (s)

Experiment 1
Experiment 2
Experiment 3

(b)

Figure 7: Analysis lag of the level 0 and 1 analysis modules in milliseconds.

Table III: Architecture topologies for the three experiments
conducted.

Level 0 Level 1
Experiment #Analysis Domain #Analysis Domain

modules size modules size
1 19 21 1 19
2 20 20 1 20
3 18 22 1 18

In order to achieve this goal, we must compare the
analysis topology built using expression 2 with topolo-
gies composed of a fewer and greater number of analysis
modules. For this purpose, we have chosen the topology
calculated for 400 parallel application tasks. The topology
for these 3 experiments are given in Table III and the results
are shown in Figure 7.

To determine whether or not the analysis module is satu-
rated we define a measurement called analysis lag, which is
the time between the generation of the final event required
for an analysis and tuning process and the start of that
process, as shown in Figure 8. A saturated analysis module
presents an analysis lag which steadily increases during the
experiment’s execution. This is because the analysis module
has an increasing backlog due to being unable to complete
an analysis and tuning process within the analysis period.
A stable analysis lag, one that does not change significantly
over time, indicates a non-saturated analysis module.

Figure 7(a) shows the analysis lag over time for the
analysis modules located at level 0 in the hierarchy for the
three compared topologies.

These results show the expected behavior, wherein the
analysis lag from Experiment 3 reflects its saturation (due

!
"#$

%!&'
(!)*

+(%
(,$

-$%
!

.%(
/0121

.%(/0121&/(,

Figure 8: Analysis lag.

to having fewer level 0 analysis modules than necessary),
Experiments 1 and 2, are not saturated as demonstrated by
the stability of their analysis lag.

The analysis lag for the level 1 analysis modules is pre-
sented in Figure 7(b). In this case, all three experiments show
analysis modules with stable analysis lag and managing a
number of children far below their maximum domain size. It
can be seen that when an analysis module is not saturated,
the analysis lag is directly proportional to the number of
nodes within the analysis and tuning domain. It should be
noted that in Experiment 3, descendant saturated analysis
modules do not affect the analysis lag metric at the level
1. However, the quality of the performance analysis and
tuning process carried out by the level 1 analysis module
in Experiment 3 will be greatly degraded by the saturation
of the descendant analysis modules.

The counterpoint to the saturation of the analysis module
is resource usage, so while Experiment 2 presents a slightly
smaller analysis lag at level 0, its use of additional resources
makes it less efficient. As such, the predicted architecture is
in fact the best candidate. It makes efficient use of resources,
employing the minimum number of non-saturated analysis
modules.

VI. RELATED WORK

Currently, there are several analysis tools that are able
to work on large scale systems, managing the scalability
problems. Well known examples are Paradyn [11], Scalasca
[4], TAU Performance System [12], and Periscope [3]. All
of them implement some sort of decentralised mechanism,
most of them hierarchical, and in some cases using MRNet.
However, none of them, except for latest efforts in Periscope,
consider application tuning.

There are also other tools which perform dynamic tuning
of parallel applications. Autopilot [13] supports dynamic
performance tuning in heterogeneous environments.The Au-
topilot monitoring process is based on dynamic integration
of sensors, which extract information about the application.
The information analysis and decision procedures are per-
formed using fuzzy logic. Finally, the application tuning is
done by dynamically inserting actuator processes.

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40 45 50

lo
g

 A
n

a
ly

si
s

la
g

 (
m

s)

Experiment time (s)

Experiment 1

Experiment 2

Experiment 3

(a)

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40 45 50

A
n

a
ly

si
s

la
g

 (
m

s)

Experiment time (s)

Experiment 1

Experiment 2

Experiment 3

(b)

Figure 7: Analysis lag of the level 0 and 1 analysis modules in miliseconds

Table III: Architecture topologies for the three experiments
conducted.

Level 0 Level 1
Experiment #Analysis Domain #Analysis Domain

modules size modules size
1 19 21 1 19
2 20 20 1 20
3 18 22 1 18

In order to achieve this goal, we must compare the
analysis topology built using expression 2 with topolo-
gies composed of a fewer and greater number of analysis
modules. For this purpose, we have chosen the topology
calculated for 400 parallel application tasks. The topology
for these 3 experiments are given in Table III and the results
are shown in Figure 7.

To determine whether or not the analysis module is satu-
rated we define a measurement called analysis lag, which is
the time between the generation of the final event required
for an analysis and tuning process and the start of that
process, as shown in Figure 8. A saturated analysis module
presents an analysis lag which steadily increases during the
experiment’s execution. This is because the analysis module
has an increasing backlog due to being unable to complete
an analysis and tuning process within the analysis period. On
the other hand, a stable analysis lag, one that does not change
significantly over time, indicates a non-saturated analysis
module.

Figure 7(a) shows the analysis lag over time for the
analysis modules located at level 0 in the hierarchy for the
three compared topologies.

These results show the expected behavior, wherein the

!
"#$

%!&'
(!)*

+(%
(,$

-$%
!

.%(
/0121

.%(/0121&/(,

Figure 8: Analysis lag

analysis lag from Experiment 3 reflects its saturation (due
to having fewer level 0 analysis modules than necessary),
Experiments 1 and 2, are not saturated as demonstrated by
the stability of their analysis lag.

The analysis lag for the level 1 analysis modules is pre-
sented in Figure 7(b). In this case, all three experiments show
analysis modules with stable analysis lag and managing a
number of children far below their maximum domain size. It
can be seen that when an analysis module is not saturated,
the analysis lag is directly proportional to the number of
nodes within the analysis and tuning domain. It should be
noted that in Experiment 3, descendant saturated analysis
modules do not affect the analysis lag metric at the level
1. However, the quality of the performance analysis and
tuning process carried out by the level 1 analysis module
in Experiment 3 will be greatly degraded by the saturation
of the descendant analysis modules.

The counterpoint to the saturation of the analysis module
is resource usage, so while Experiment 2 presents a slightly
smaller analysis lag at level 0, its use of additional resources
makes it less efficient. As such, the predicted architecture is
in fact the best candidate. It makes efficient use of resources,
employing the minimum number of non-saturated analysis
modules.

VI. RELATED WORK

Currently, there are several analysis tools that are able
to work on large scale systems, managing the scalability
problems. Well known examples are Paradyn [11], Scalasca
[4], TAU Performance System [12], and Periscope [3]. All
of them implement some sort of decentralised mechanism,
most of them hierarchical, and in some cases using MRNet.
However, none of them, except for latest efforts in Periscope,
consider application tuning.

There are also other tools which perform dynamic tuning
of parallel applications. Autopilot [13] supports dynamic
performance tuning in heterogeneous environments.The Au-
topilot monitoring process is based on dynamic integration
of sensors, which extract information about the application.
The information analysis and decision procedures are per-
formed using fuzzy logic. Finally, the application tuning is
done by dynamically inserting actuator processes.

Stable	 state	

Outline	

•  Mo8va8on.	

•  Large-‐scale	 Dynamic	 Tuning.	

•  Scalability	 Evalua8on.	
	

•  Conclusions	 and	 future	 work.	

Computer	 Architecture	 and	 Opera8ng	 Systems	 Department	
Universidad	 Autónoma	 de	 Barcelona	

Conclusions	
•  A	 model	 for	 distributed	 performance	 analysis	 based	 on	 a	 hierarchical	 tuning	

network	 has	 been	 defined.	

•  The	 decentralised	 decision	 making	 process	 employs	 user	 provided	 performance	
models	 and	 an	 abstrac8on	 mechanism.	

•  The	 scalability	 of	 the	 proposed	 model	 has	 been	 verified	 using	 a	 prototype	 of	 the	
tuning	 network.	

	

	

Departamento	 de	 Arquitectura	 de	 Computadores	 y	 Sistemas	 Opera8vos	
Universidad	 Autónoma	 de	 Barcelona	

Future	 work	
•  Show	 the	 benefits	 of	 our	 approach	 when	 applied	 to	 real	 large-‐scale	 applica8ons	

in	 order	 to	 improve	 their	 performance.	

•  Combine	 our	 approach	 with	 the	 one	 implemented	 under	 the	 AutoTune	 project.	

Thank	 you	 for	 your	 aeen8on	

HIPS	 2013	 Conference	

amarBnez@caos.uab.es	
	

Andrea	 Mar)nez,	 Anna	 Sikora,	 Eduardo	 César,	 Joan	
Sorribes	

	
Computer	 Architecture	 and	 Opera8ng	 Systems	 Department	

Universidad	 Autónoma	 de	 Barcelona	

Determining	 the	 architecture	 topology	

Parallel	 applica8on	 of	
N	 tasks	

The	 use	 of	 architecture	 topologies	 with	 the	 minimum	 number	 of	 non-‐saturated	 analysis	 modules.	 	

Table I: Description of variables which represent the performance and abstraction models.

Variable description
N the number of nodes in the analysis and tuning domain for each analysis module
Ea the number of events received from each node of the analysis and tuning domain before performing analysis to detect performance

problems
Ec the number of events received from each node of the analysis and tuning domain before creating a new event which will be sent

to the level above in the hierarchy
Ta(N) the time required to perform analysis to detect performance problems. This time can be constant or dependent of N
Tm the time required to transfer each event received by the analysis module to the correct module, where it is stored
Tc the time required to create a new event which will be sent to the level above in the hierarchy
Tt the time required to transform an instrumentation order which will be sent to the level below in the hierarchy
frp the tuning order reception frequency from the parent analysis module
frc the event reception frequency from each child node of the analysis and tuning domain
fe the events generation frequency of the parallel application

order for moving load from the application tasks T5 and T9,
because these tasks are the only ones that share a common
border with the analysis and tuning domain of A1.3.

III. DETERMINING THE ARCHITECTURE TOPOLOGY

Given a parallel application, the proposed analysis ar-
chitecture may have several topologies, depending on the
number of analysis modules used to build it.

In this work, we propose the creation of architectures
that use the fewest possible resources, so a topology with
the minimum number of analysis modules must be found.
However, these analysis modules cannot become saturated.
An analysis module is saturated if it cannot process and act
upon the information that it receives from the application at
the frequency with which it is sent.

The maximum domain size for a non-saturated analysis
module is determined by the work required during an analy-
sis and tuning process - detecting performance problems and
making decisions to improve the performance of the parallel
application. Considering the variables presented in Table I,
we can define the total time that an analysis module requires
to carry out an analysis and tuning process as:

N · Ea · Tm + Ta(N) +
Ea

Ec
· Tc + Tt · frp (1)

This work can be divided into several actions:
1) Gathering behavioural information about the nodes

that make up the analysis and tuning domain of the
analysis module. The time required to gather an event
and transfer it to either the Tunlet or the Event Creator
is Tm. This action is repeated for each event received
before detecting performance problems, i.e N · Ea.

2) Detecting performance problems and making the nec-
essary decisions which will improve the performance
of the application. According to the characteristics of
the performance model, the time taken by an analysis
module to detect performance problems, Ta(N), can
be constant or dependent on the number of nodes
that compose the analysis and tuning domain of the
analysis module.

3) Creating a new event using the behavioural informa-
tion previously gathered, taking a time equal to Tc.

The number of occurrences of this action in an analysis
and tuning process is determined by Ea/Ec.

4) Translating an instrumentation order received from the
parent Analyzer, taking a time equal to Tt. How often
this action is performed depends on the frequency
with which tuning orders are received from the parent
Analyzer, frp.

The frequency at which an analysis and tuning process
takes place in an analysis module is fa = frc/Ea. This value
ultimately depends on the frequency with which events are
generated in the parallel application task, fe.

In order to avoid saturation, the maximum time that an
analysis module can dedicate to carry out an analysis and
tuning process is 1/fa, the analysis period. This constraint
is defined by the following expression:

N · Ea · Tm + Ta(N) +
Ea

Ec
· Tc + Tt · frp ≤ 1

fa
(2)

If the time spent performing the work of an analysis and
tuning process is equal to 1/fa, the analysis module does not
have free time between two analysis and tuning processes. In
other words, it is occupied 100% of the time making efficient

Algorithm 1 Calculating the topology of the hierarchical
architecture
Input: #Tasks // Number of tasks of the parallel application.
Input: E

i
a, E

i
c, T

i
a(N), T i

m, T
i
c , T

i
t , f

i
rp, f

i
rc // Analysis and tuning

process variables for each level i
Output: Topology[]

i = 0 // i indicates the level of the hierarchy. i = 0 means the
base of the hierarchy.
Current level tasks = #Tasks // The base level tasks are
all the tasks of the parallel application.
repeat

N =
1
fi
a
−Ei

a
Ei

c
·T i

c−T i
a(N)−T i

t ·f
i
rp

Ei
a·T i

m

#Analysis modules = (int)Current level tasks
N

Topology[i] = #Analysis modules

Current level tasks = #Analysis modules

i++

until #Analysis modules > 1

Work	 during	 the	 analysis	 and	 tuning	 process	

Gathering	 performance	 data	

Performance	 analysis	

Event	 crea8on	
Order	 transla8on	

256	 tasks	 	
Parallel	 applica8on	

64

64 64

64

64

64

64 64

64

Computer	 Architecture	 and	 Opera8ng	 Systems	 Department	
Universidad	 Autónoma	 de	 Barcelona	

Hierarchical	 Master/Worker	 Master/Worker	 of	 pipelines	

Hierarchical	 Tuning	 Network	

Computer	 Architecture	 and	 Opera8ng	 Systems	 Department	
Universidad	 Autónoma	 de	 Barcelona	

